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SUMMARY 
A 3D Navier-Stokes solver has been developed to simulate laminar compressible flow over quadrilateral 
wings. The finite volume technique is employed for spatial discretization tvith a novel variant for the viscous 
fluxes. An explicit three-stage Runge-Kutta scheme is used for time integration, taking local time steps 
according to the linear stability condition derived for application to the Navier-Stokes equations. The code is 
applied to compute primary and secondary separation vortices at transonic speeds over a 65" swept delta 
wing with round leading edges and cropped tips. The results are compared with experimental data and Euler 
solutions, and Reynolds number effects are investigated. 
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1. INTRODUCTION 

Even at moderate angles of attack, the flow over a swept delta wing is characterized by a pair of 
symmetric primary vortices separating on the leeward side from the leading edges and symmetric 
counter-rotating secondary vortices separating from the leeward side inboard of the leading 
edges. ' 

Since the augmented lift induced by the leeside vortices is of great aerodynamic usefulness, a 
numbcr of experimental and theoretical investigations have been performed (see Reference 2 for a 
recent overview). Panel and Euler methods have frequently been used, while recently 
Navier -Stokes methods have been employed. 

Explicit predictor-c~rrector,~ implicit approximate factorization4 and upwind relaxation' 
time-stepping schemes using finite difference and finite volume space discretizations have already 
been applied to solve the three-dimensional compressible Navier-Stokes equations for flow over 
delta wings.6 - ' The comparison with experimental data demonstrated the realism of the 
simulations for subsonic and supersonic steady flow. Maximum lift and vortex breakdown were 
predicted, in close agreement with wind tunnel measurements for subsonic flow.'. 

~~ 
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Explicit Runge-Kutta time-stepping methods using the finite volume space discretization were 
first developed for the numerical solution of the Euler equations.". l 1  Later the methods were 
extended to solve the Navier--Stokes equations,' - l 8  discretizing the velocity and temperature 
gradients as well as div u on cell interfaces either by local co-ordinate transformations or by 
averaging over straddling cells, in either case involving 19 cells in three dimensions. 

In the present paper, laminar transonic flow over the 65" round leading edge delta wing 
proposed for the International Vortex Flow Experiment on Euler Code Validation (the subject of 
the International Vortex Flow Symposium held in Stockholm on 1-3 October 1986) is simulated 
at M,=0.85, a = 1 0 ,  Rea,,=2.38x lo6 and Re,,,,,,=lOm (rn=5 ,  6, 7). The compressible 
NavierAtokes equations (Section 2) are discretized using the finite volume technique in space 
involving 25 cells to form the viscous flux difference as opposed to the conventional 19 cells. Non- 
linear second-order and linear fourth-order damping terms are added to the physical difference 
operator. The resulting system of ordinary differential equations is solved by an explicit three- 
stage Runge-Kutta scheme in time. A linear stability condition is derived for a scalar model 
equation to determine the local time steps and the allowable damping coefficients (Section 3). The 
65" swept delta wing has 15% taper and is defined by one section with 0.7% nose radius and with 
5% thickness at 40% local chord. The fine 0-0-type mesh has 129,49 and 65 grid points in the 
chordwise, near-normal and spanwise directions respectively (Section 4). The delta wing surface is 
assumed to be adiabatic. Locally one-dimensional characteristic boundary conditions are used in 
the far-field (Section 5).  Results are presented for the above mentioned cases and compared with 
experiment and the Euler solution (Section 6). 

2. GOVERNING EQUATIONS 

Fluid motion is governed by the conservation laws for mass, momentum and energy. The fluid 
investigated here is a perfect gas obeying Newton's and Fourier's laws. External forces and heat 
sources are not taken into account. For an arbitrary stationary cell Vwith boundary 2Vand outer 
normal unit vector n in an absolute frame of reference, the Navier-Stokes equations read'' 

J v  $ d V +  
H - n  dA =0, 

where 

Q= 
(e + p)u - T - u + q 

Q is the vector of the conservative variables, i.e. density, momentum density and total energy 
density. H represents the flux tensor, I the unit tensor. Pressure p and temperature Tare related to 
the conservative variables by the equations of state for a perfect gas with the ratio of constant 
specific heats y = 1.4. The stress tensor is given by Newton's law: 

T = &gad u +(grad u)'] + 2 div u I. (2) 

q= --K grad T. (3) 

Fourier's law states for the heat flux 

The viscosity coefficients p and i. are related by Stokes' hypothesis. The Prandtl number is 
assumed to be constant, namely Pr =0.72, thus giving a simple relationship between the thermal 
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conductivity coefficient K and the viscosity coefficient p. The dependence ofp on the temperature T 
is obtained from the Sutherland law with the Sutherland constant S/T,  =0.375. 

A spatial vector is expressed in Cartesian co-ordinates x, y and z, i.e. chordwise from the apex, 
spanwise from the plane of bilateral symmetry and normal from the wing plane respectively. A 
velocity vector u is represented by its components u, u and w in the corresponding co-ordinate 
directions. 

3. NUMERICAL METHOD 

Spatial discretization 

The Navier-Stokes equations (1) are discretized in hexahedrons (Figure 1) using the finite 
volume te~hnique .~  Since the conservative variables are assumed to be defined by their cell 
averages, the volume integral in (1) over a cell P is expressed by 

(4) 

The surface integral in (1 )  over the boundary of cell P is approximated by assuming the mean 
value of the flux tensor on each side to be equal to the arithmetic average of the flux tensor in the 
adjacent cells: 

where 

H P &  = 3 W P  + Hk). 
a vpk denotes the common part of the boundaries of P and its neighbouring cell k. The cell volume 
in (4) is computed as the sum of five tetrahedra.z0 The surface normal in ( 5 )  is determined as the 
sum of the surface normals of two triangles.’l 

With the conservative variables given, all terms of the flux tensor are readily available in cell P, 
except for the gradients of the velocity components and temperature as well as div u. Following the 

Figure 1. Basic hexahedron P and neighbouring cells 1 to 6 (2 and 5 set apart) 
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definition of the conservative variables as cell averages, the gradients in cell P are defined by 

grad 4.=1 grad 4 dV/Iv:V, (6) 
V P  

where 4 = u ,  u, w or T. 

which is approximated similarly to (5) :22 
Using the gradient theorem, the volume integral in (6) can be expressed by a surface integral, 

where 

4 P k = t ( $ P +  43. 
div up is evaluated similarly to grad 4p 

On a Cartesian equidistant grid, the present finite volume approximation is equivalent to a 
second-order central difference discretization involving 25 points as opposed to the conventional 
19 points. The approximation of the viscous terms is consistent with the flux tensor averaging (5). 
The use of local co-ordinate transformations and the definition of straddling cells are avoided. 
Instead, the Cartesian derivatives of velocity and temperature are cell-averaged and therefore rot u 
is also directly given for each cell, a useful property, e.g. for the application of the Baldwin-Lomax 
turbulence model. Norton et 0 1 . ~ ~  have also considered this same approximation. 

Numerical damping 

The spatial discretization constitutes the physical difference operator F,, defined by the right- 
hand side of (5) divided by the cell volume. These central differences do not damp unphysical 
oscillations caused by flow discontinuities and waves with short wavelengths. The numerical 
damping terms, which are therefore added to FPH(Q), comprise non-linear second-order differ- 
ences sensed by the discretized second derivative of the pressure, and linear fourth-order 
differences of the conservative variables:20 

FdQ) =(CFLIAt) { X ( S I C S I ( P ) S I I  +~JCSAP)~JI  + 8 K C S K ( P ) b K l ) - A ( 8 : + 8 f  + J",>>Q, (8) 
with CFL the maximum CFL number used (see the subsection on stability below) and At the time 
step. The constants x and A lie in the ranges 0 < x < 0905 and 0.005 < A < 0.02 (see the subsection 
on stability below). The sensors sI,  s J  and sK are of similar form, e.g. s j  for a cell indexed by I, J ,  K is 
given by 

The classical finite difference operators are defined by 

s I  a I . J . K = a I +  l / 2 , J , K - a I -  1/2.J.K? 

p I a I , J , K = ( a I +  1 /2 .J .K+a1  - 1/2.J.K)/2 (10) 
and similarly for J and K. 

The numerical damping operator FN is modified near the wing surface and in the far-field to 
ensure its dissipative property there also.24 Using the periodic and symmetry boundary conditions 
(see Section 5), FN can be determined near these boundaries without modifying (8) or (9). 
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Time integration 

Thus the semidiscrete approximation of the Navier-Stokes equations can be written as 

dQ/dt = F(Q), (11) 
where 

Equation (1 1) represents a large system of first-order ordinary differential equations. It is solved 
for the steady state by the second-order explicit three-stage Runge-Kutta scheme? 

F = F,, + F,. 

Q(O) = Q“, 

Q“) = Q(’) + At F(Q(O)), 

Q‘2’=Q(o)+,At[(1 -6)F(Q‘”+6F(Q‘’’)], 

Q(3) = Q(’) + AtC(1- 0) F(Q‘O’) + 0 F(Q@))], 
Qn+l=Q(3) ,  

with 0=  1/2; n denotes the time level. 

Stability 

Navier-Stokes equations (1) is studied for the scalar model equation 
The stability of explicit Runge-Kutta schemes applied to the semidiscretization (1 1) of the 

where 
Ah = lu - grad hi+ clgrad hi, 
v h  = v grad h * grad h + Ah2Xh CFL/At, 

vhg = Zvlgrad h * grad gl +-lgrad h( [grad g I, A+P 
P 

&h = - Ah4 A CFL/At, 

with c the speed of sound and 

v=max {p ,  A+%, py/Pr} /p ,  X h = X S b  -h, gE{t ,  ?Y r>* 
Equation (13) is derived from the differential form of the Navier-Stokes equations in 

transformed co-ordinates 5, q and by linearization and from the differential expressions of the 
damping terms in (8). Ah is chosen equal to the maximum modulus of the eigenvalues belonging to 
the Jacobian matrix of the flux in the h-direction. v h  and vhg are determined by the maximum 
moduli of the eigenvalues belonging to the coefficient matrices of the second derivatives a2/ah2 
and az/ahag respectively in the linearized Navier-Stokes equations, including the differential 
expressions of the linearized second-order damping terms. E~ represents the coefficient of the 
fourth-order damping term in the h-direction. Thus the scalar ansatz (13) models the full 
Navier-Stokes equations including the numerical damping terms, whereas inviscid, diffusion and 
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mixed-derivative vector parts of the linearized Navier-Stokes equations are considered separately 
in References 26-28 to determine the respective time steps of time-splitting schemes. 

The first and second spatial derivatives in (13) are discretized by second-order central finite 
differences corresponding to the finite volume approximation (1 1): 

The finite difference operators in (14) are defined by (10) with ( corresponding to I, t,~ to J and l 
to K. The fourth derivatives in (13) are discretized according to (8). 

Note that a,, l , J , K ,  a,,,, l , K  and do not appear in (14b). The second-order truncation 
error in (14b) is four times greater than that which would be obtained if the compact differencing 
6: were used instead o f  (Phhh)’. 

The linear stability of an explicit Runge-Kutta scheme is investigated for application to the 
model equation (13) with frozen coefficients and spatially discretized by (14). The analysis shows 
that the shortest resolvable waves are undamped by (14b), in contrast to the compact differencing 
6;. The stability condition reads 

where 

v’h = zv grad h * grad h + 4Ah2xh CFLIAt, 

with a= 1 for (14b) but a = 4  for the compact differencing 6;. 
The negative and positive stability bounds RK and CFL are chosen such that all complex 

numbers z with RK < Re(z) GO and IIm(z)l< CFL lie inside the stability region of the Runge-Kutta 
method. For the three-stage Runge-Kutta method (12) the following choice is made: CFL= 1 5 ,  
RK= - 1 (Figure 2). 

The viscous contributions in (15) (denoted here by S) involving the coefficient v and the second- 
and fourth-order damping coefficients in (15) (here referred to as D, and D,) share the negative real 
axis of the stability region. Their distribution may be prescribed by 

where O<bl and cf=, B,= 1. Equations (16b) and (16c) yield the following conditions for the 
damping coefficients: 

x G ( ~ , I ~ ~ ) I R K I / C F L  (1 7a) 

A<(p,/16d)lRKICFL, ( 17b) 
with d the dimension, i.e. d = 3  for 3D. 
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Figure 2. Contours of constant modulus of growth factors of (12) and stability bounds RK and CFL 

Then, using (16a) in (15), the stability condition is obtained: 

where 

vM = av grad h * grad h, 

with a = 1 for (14b) but a = 4  for the compact differencing 6;. 

are related to geometrical quantities:” 
In order to apply the stability condition (18) to the finite volume discretization, the metric terms 

cell volume 
ATAqAyJ- ’ = v = 1 d V, 

V 

surface normal in G-direction 

where g = 5, q,  C corresponds to G = I, J, K and a V,  denotes a cell boundary with constant G. J 
represents the Jacobian determinant of the transformation (t, q, OT (x, y ,  z). 
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Thus the stability condition (18) with (17a) and (17b) for an explicit Runge-Kutta method like 
(12) applied to the finite volume discretization of the Navier-Stokcs equations ( 1  1) reads 

At < min { CFL v [lu - S,I + clS,I + Iu - S,I + clS,I + - SKI + CIS,)]- ', 
lRKlvZ[v {a@, *S, +S, ' S j  + S K  * S,) + 2(P, .sjl+ 1% * S K I  + IS,. %I)} 

+ [(A +P)/pI (Is,l I s J I  + I s , [  Is,[ + l s J l  I s K O ]  - '}, (20) 

with a= 1. 
If the compact differencing S,2 were used instead of (14b), the stability condition would be more 

restrictive, since S, - S, + S, * S, + S, * S, would have to be multiplied by a = 4. 
j3, = 1/2, j2= 1/30 and p3= 1/2 were used in (17) and (20) for the present calculation with 

CFL=0-5 and RK = - 1.  Although P I >  1 ,  stability was maintained, indicating that the 
stability bound RK could have been chosen lower than - 1 for the Runge-Kutta method (12). For 
the 65 x 25 x 33 medium mesh, CFL = 1.5, RK = - 1 ,  = 1/2, B2 = 1/10 and P3 = 3/2 were used. 
Computational work is saved by computing the local time steps according to (20) only at those 
time levels which are powers of two. 

4. MESH 

The round leading edge delta wing proposed for the International Vortex Flow Experiment on 
Euler Code Validation has 65" sweep and 15% taper. It is defined by one section in terms of 
x- and z-co-ordinates, i.e. chordwise from the leading ledge and normal from the wing plane 
respectively, non-dimensionalized by the local chord: 

+ 10.1 183,/x - 0.2 101 x + 0.3501 x2 - 0.3406~ for 0 < x < 0.4, .={- NACA 64A005 for 0*4<x< 1. (21) 

The nosc radius is 07%,  the maximum thickness at 40% is 5% local chord and the trailing edge is 
sharp. 

The 0-0 mesh topology introduces periodic, symmetry, wing and far-field boundaries to 
determine bilaterally symmetric flow over a quadrilateral wing. The symmetry boundary lies in 
the y = 0 plane. A hemisphere with a radius of three root chord lengths from root mid-chord is 
chosen as the far-field boundary. The periodic boundaries extend from the trailing edge and tip of 
the wing in the positive x- and y-directions respectively. 

The 0-0 meshes are generated by the transfinite interpolation method.30 The fine mesh 
consists of 129,49 and 65 grid points in the chordwise (I-direction), near-normal (J-direction) and 
spanwise (K-direction) respectively, i.e. 410 865 grid points in total. On the wing the mesh points 
are clustered near the leading edge and tip, and to a lesser extent also near the trailing edge and 
symmetry boundary, with larger spacings in the mid-sections (Figure 3). On the hemisphere in the 
far-field the grid points are distributed equally (Figures 4 and 5), except for a clustering near 
the two points lying on the two parabolic singular lines extending from the tip leading and 
trailing edges.30 The mesh is nearly orthogonal at  the wing contour, except for the points near the 
trailing edge and tip. The grid points between wing contours and far-field are clustered near 
the wing to resolve the boundary layer for the respective Reynolds number (Figures 4 and 5 for 
Rem,,, = 2.38 x lo6). For Reao,SPAN = lo" (rn = 5, 6, 7) 65 x 25 x 33 medium grids have been used, 
each with a different clustering in the near-normal direction. 
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Figure 3. Surface mesh of 65" swept cropped delta wing 

5. INITIAL AND BOUNDARY CONDITIONS 

For M, =0.85, a= 10' and Rem,SPAN = lo5 the calculation is started from freestream on the course 
mesh obtained by cancelling every other point of the medium (53 625 grid points) mesh. Then the 
result is interpolated on the medium mesh and 500 time steps are taken to obtain the result on the 
medium mesh. This result is used as the initial condition for the next higher Reynolds number, etc. 

For M, =0.85, a= 10' and Re,,c,=2.38 x lo6 the calculation is started from freestream on a 
coarse mesh using a large second-order damping coefficient (x=O1) which is subsequently 
reduced. The converged result is interpolated on the medium mesh and so on to the fine mesh. 

At periodic boundaries grid points on upper and lower surfaces are mapped onto each other. 
For the conservative variables to be uniquely defined, the periodic boundary condition requires 

Q I U A X . J . K =  Q i . J . K ,  Q I . J . K M A X =  Q I u A x - I . J . K M A X -  1- (22) 
At the symmetric boundary p, u, w and e are even functions with respect to y, and u is odd: 

(23) 
The no-slip condition holds on the wing, which is assumed to be adiabatic. The pressure is 

(p, u, u, w, e)'(x, y, z) = ( P ,  u, - 0, w, e)+(x, - Y, z). 

obtained by neglecting the viscous terms in the wall normal momentum equation: 

The pressure and the stress tensor at the wing interface of the first cell above the wing are 
approximated by their values in that cell. 

The boundary conditions at the far-field boundary are based on the theory of characteristics for 
locally one-dimensional inviscid flow.31 For supersonic inflow or outflow the locally one- 
dimensional Riemann invariants, entropy and tangential velocity component, i.e. (with the speed 
of sound c) 

L L 
R,=u-n- - - c ,  R , = u . n + - c ,  

Y-1 Y-1 
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(b) 

Figure 4. Mesh in plane of symmetry 
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(b) 

Figure 5. Mesh in surfaces I = 33 and 97 seen from behind (at - 37% local chord on wing) 
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are given from outside or inside the region of interest respectively by 

Rm=R,_, aR,/an = 0. (25b) 
For subsonic inflow R, ,  R ,  and R, are given from outside and R ,  from inside. For subsonic 

The conditions (25b) are used to determine R,  in a fictitious cell outside the domain of 
outflow R,, R ,  and R, are determined from inside and R ,  from outside. 

integration either by freestream or by R,  in the cell next to the far-field. 

6. RESULTS 

A computer program has been developed based on the Runge-Kutta finite volume method for the 
three-dimensional Navier-Stokes equations. The code is implemented on the CYBER 205 (two 
pipes and eight million words of memory) of the Scientific Information Service in Kansas City, 
MO. The fine-mesh computations were performed on the CYBER 205 of the Minnesota 
Supercomputer Center located at the University of Minnesota. The vector-coding concept of 
Reference 32 is employed to fully vectorize the computer program. Using half-precisiyn and a fine 
129 x 49 x 65 mesh, the latest version takes 23 x CPU seconds per time step and per grid 
point. 

Laminar flow over the 65" swept round leading edge cropped delta wing described in Section 4 
has been simulated at M ,  =0.85, a= 10' and Re,,cR=2.38 x lo6 (based on root chord cR). 

The convergence history (Figure 6, top) shows a rapid decrease of the density change in the 
coarse and medium mesh. The 'spikes' are due to the normalization /1p"-p"-1112/11p1 -p0) l2  at 
restarts and to interpolations from coarser to finer grids. The convergence in the fine mesh is poor 
because the CFL number had to be decreased from 1.5 and 1 to 0.5 to allow a larger second-order 
damping coefficient x (see (17a)) in the first cycles on the fine mesh. Decreasing x had a negative 
effect on convergence but apparently no effect on lift and drag, except for the coarse mesh 
(Figure 6, bottom). On each mesh level C ,  and CD become constant and the density change is 
deemed low enough to assume steady flow results. 

Comparison of the lift, drag and pitching moment (around x/cR = 0.57) coefficients for the 
different mesh levels (Table I) shows that the coarse (33 x 13 x 17) mesh underpredicts C,  and C, 
considerably. The medium-mesh C ,  and the fine-grid CD happen to be closest to the experimentjj 
measured at the higher Reynolds number Re,,,R=9 x lo6. 

The pressure coefficients at the stations x/cR = 0-3, 0.6,0.9 and 0.95 and 2y/b = 0.55 (b  denotes 
span; see Figure 7) are compared with experimental data34 at Re,,,R =2.38 x lo6 and Euler 
solutions35 with lo6 points. s(x) denotes the local semi-span, l ( y )  the local chord and xLE the local 
leading edge x-component. The location of the primary vortex core is predicted in good agreement 
with the experiment, whereas the pressure minimum in the Euler solution lies too close to the 
leading edge (Figure 8). The pressure level under the primary vortex core is predicted correctly 
with the fine mesh, while the medium mesh overpredicts the pressure, probably because of poor 
vortex resolution (e.g. at 2ylb =035 in Figure 8).36 

Between the primary and secondary separation cores at x/cR = 0.3, 0.6 and 0.8 the pressure is 
overpredicted with the fine grid as well, and the pressure under the secondary vortex core is lower 
than in the experiment. At x/cR a pressure rise can be seen close to the leading edge. That pressure 
increase is neither apparent in the medium-mesh solution36 nor in the experiment. Even with finer 
meshes, however, complete agreement cannot be expected from a laminar computation, because 
the flow was observed to be transitional in the experiment. Moreover, the wind tunnel model was a 
wing-body combination on the windward side. 
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Figure 6. Convergence history for M, = 0.85, a = 10’ and Re,.,, = 2.38 x lo6 
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Table I. Comparison of integral values for M,=085, a=lOO, 
Re,,,=2.38 x lo6 (9 x lo6 in experiment) 

Coarse 33 x 13 x 17 0.38 1 1 0.0633 - OW88 
Medium 65 x 25 x 33 0.4466 0.074 1 -00108 
Fine 129 x 49 x 65 0.4586 00752 - 0.0098 
Experiment33 0.4386 0.0755 - OQ073 

x/c ,=a .3  X/C, = 0 .6  X/C, - 0 . 8  X/C, = 0 . 9 5  

Figure 7. Stations x/c,=0.3,0.6, 0.8, 0.95 and 2y/b=0.55 

Figure 9 shows pressure coefficient, Mach number and total pressure (1 - p o / p o  ) contours as 
well as velocity vectors at x/c, =0.3,06,0.8 and 0-95. The growth of the primary vorzeex can be well 
identified. However, the secondary vortex is hardly visible, even in the enlargement of the velocity 
vectors near the leading edge and tip. Note that the velocity vectors in Figures 9 and 10 are not 
given at mesh points but are interpolated to a Cartesian mesh. The structure of the primary vortex 
can be seen in a chordwise cut in Figure 10. 

In Figure ll(a) the secondary separation line at y/s(x)-00-74 is indicated by the line towards 
which the skin friction lines converge. The skin friction lines emanating from points a short 
distance away from the tip and trailing edge turn in an upstream direction and apparently 
terminate in a nodal point of separation on the secondary separation line. 

The pressure minimum (Figure 1 l(b)) almost coincides with the secondary separation line, 
around which large gradients of the modulus of vorticity (Figure 1 l(c)) can be seen. Pressure and 
vorticity are nearly conical up to x/c, -055. Their gradents near the leading edge between 
x/cR - 0.55 and - 0.75 might be indicative of a tertiary separation vortex (cf. X/C, = 0.6 in Figure 8). 

The streamlines (Figure 12) show two distinct vortices which lift before the trailing edge. 
The velocity vectors in grid surfaces (at - 37% local chord on the wing) seen from behind show 

the flow directions (Figure 13). On the leeward side the boundary layer flow is directed in a 
clockwise direction from the symmetry plane up to the secondary separation line, where it meets 
the flow going in the opposite direction. The primary and secondary vortices are clearly visible. 

In the medium-mesh computations the Reynolds number has been vaned (Figure 14). For 
Re,,,,,, = lo5 primary and secondary vortices are well resolved, while only the secondary 
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Figure 8. Comparison of pressure coefficient for M, =0.85, a =  10' and Re,,,, =2.38 x lo6: -, present Navier-Stokes 
solution; 0, experiment;" -, Euler so l~ t ion '~  

vortices are well represented for RemeSPAN= lo6 and lo'. Comparison of the location of the 
pressure minimum (not shown) and the vortex core for these Reynolds numbers shows that the 
primary and secondary vortices lie closer to the leading edge and tip for higher Reynolds numbers. 
This observation is supported by the experimental finding that the primary vortex axis moves 
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x/cR=o. 3 x/cR=O. 6 x /cR=o .  8 x /cR=o .  95 

Figure 9. Pressure coefficient, Mach number and total pressure (1 - po/po ) contours and velocity vectors in global view 
and enlarged (in 2s(x)/b - 0 2  < 2y/b < 2s(x)/b, 0 < 2z/b < 0.05) for Mz = 0.85, a = 10' and Rem,ca = 2.38 x lo6 
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AC =O. 1 
u p  

Figure 10. Pressure coefficient, Mach number and total pressure (1 -p , /po , )  contours and velocity vectors at 2s /b  =035 
for M, =0.85, a= 10, and Re,,,=2.38 x lo6 

closer to the sharp leading edge of a 75" swept delta wing as the Reynolds number  increase^.^' 
However, this effect vanishes for Re,,cR > 106.37 

7. CONCLUSIONS 

A Navier-Stokes analysis code for laminar compressible flow over quadrilateral wings has been 
developed. The finite volume technique is employed with a larger difference molecule than the 
conventional compact differencing approach for viscous fluxes. A linear stability condition is 
derived to determine the local time steps and the allowable damping coefficients of the explicit 
Runge-Kutta scheme used for time integration. The method has been applied to simu- 
late transonic flow over a 65" swept round leading edge cropped delta wing. The computation 
with a 129 x 49 x 65 0-0 mesh shows that the location of and pressure level under the pri- 
mary vortex are predicted well compared with experimental data for M ,  = 0.85, u = lo" and 
Re,,, = 2.38 x lo6. However, the pressure level between the primary and secondary vortices is 
overpredicted. The results obtained at M, = 0.85, a = 10' and = 10" (m = 5,6,7) 
indicate that the primary and secondary separation vortices lie closer to the leading edge 
for higher Reynolds numbers. 
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Figure 13. Velocity vectors in cells I=33 and 96 seen from behind for M,=0.85, a=lOo and Re,,,=2.38 x lo6 

. . . . . . .  - - - * -  
, /  

Figure 14. Velocity vectors in cells I=  17 and 49 seen from behind for M, =045 and a= 10’ 
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